
7 AD-AlBA 591 MASSACHUSETTS UNIV AMHERST DEPT OF COMPUTER AND INF--ETC F/ 9/2

DEVELOPMENT OF A PROGRAM TESTING SYSTEMA l LAK AOM77DR

UNCLASSIFIED AFOSR-TR-Al-0803 NL



1.25 1.4 .6B~

S.M I U, I III IN I I I4I



IFOSR-TR- 8 1 -0 803

Final Scientific Report
for

Development of a Program Testing System

Lori A. Clarke, principal investigator

Grant Number: AFOSR-77-3287
Grant Period: June 1, 1977 - May 30, 1981
Grant Award: $147, 3 48

Appre toiublio rei&ag.•
distributtion unlimited.

d t2 14 039



Page 2

I. Introduction

Programmers have historically used testing to convince

themselves and others that their software works. Although

testing has limitations, as do other reliability methods, it

has one major advantage: it is the only method in which the

actual behavior of the software can be observed. Thus,

errors or oversights in the supporting environment,

including the available validation tools, translators,

operating system, and hardware, may be detected. Moreover,

the actual performance can be evaluated for efficiency and

usefulness.

We have been using the ATTEST system [CLA78a, CLA78b)

as a vehicle to design, implement, and experiment with

various aspects of symbolic execution and software testing.

ATTEST is an experimental symbolic execution system that

attempts to generate test data to satisfy a variety of

testing criteria. It is composed of three major components:

path selection, symbolic execution, and test data

generation. The path selection component is concerned with

selecting program paths that satisfy user selected testing

criteria. Usually this involves choosing paths that contain

untested segments of code. The symbolic execution component

then analyzes each selected path. During symbolic

execution, the computations on a path are represented as

algebraic expressions, the domain for the input values is

defined by a set of constraints, and error detection is

done. The test data generation component checks the domain
const r a i-A Fqh6W;,~pcy and, if consistent, generates

NT C F TT.VS:,ITT, L TO DI

This to :i-, t c' ~ ' . - -. i
"Pproce fo ""P bI c el ,e .'A", oli .

Distrihu i "is lirnited,MA TTHEW j. KL-N-

Chief, Technical [,)rmation Division

A m& " - - . . . . . .. . ., . . . . . , . . . . [rol. .. . • i . .



Page 3

test data that would drive execution down the selected path.

ATTEST is designed so that it can either augment

user-selected test data or independently generate sets of

test data. Although ATTEST will not guarantee correctness

of a program, it does surpass current testing techniques in

that it offers a systematic method of selecting test data to

achieve a determined measure of program coverage, and it

provides symbolic representations of a path's computation

and domain that can be utilized by a variety of testing

strategies.

During the grant period, we addressed several issues

relating to the development of a testing system. In the

sections that follow, an overview of our investigation in

each of these issues is provided.

II. Path Selection

A well accepted criterion for testing programs is to

execute all branches at least once. Although this criterion

does not guarantee detection of all errors, it does

guarantee a minimal level of program coverage. Manually

creating test data to satisfy this criterion can be very

tedious and, at times, very difficult. Experiments have

shown that without automated assistance, this level of

testing is rarely achieved (STU73]. Furthermore, the

sections of code that are the most tedious to test,

typically code for checking the validity of parameters and

input deta, are usually the most susceptible to this

approach, thus freeing the programmer to concentrate on more

K



Page 4

rigorous testing strategies for the more abstruse code

segments.

Previously attempted solutions to the problem of

generating a set of paths to execute all branches have been

unsuccessful or inefficient. Methods considering only

program structure [PA175, McC76) have failed because of the

large number of nonexecutable paths that they generate.

Some attempts had been made to detect incompatible branch

conditions [KRA73, OST77], however, the complexity of

incorporating this information into a static path selection

algorithm is NP complete (GAB76]. The SMOTL system [BIC79]

statically describes the complete set of paths for executing

all branches, but then symbolically evaluates each path to

eliminate the nonexecutable ones; this method works, but is

extremely inefficient.

We developed an efficient, dynamic method for selecting

paths. Instead of describing all the paths before symbolic

execution is initiated, this method selects paths during the

symbolic execution process. This allows information

obtained about a portion of a path to be utilized when

selecting the rest of the path. In addition, this method

maintains a path history of the program so that it can

"learn" from past experience. When a conditional statement

is encountered on a path, the current path status and path

history are used to determine which branch from this

conditional statement should be selected next. The branch

that appears to have the highest potential for achieving

additional program coverage is selected.

AA-



I. -

Page 5

This path selection method is not just applicable to

the all branches testing criterion, but is applicable to a

range of criteria based on program coverage. Our program

coverage method of path selection requires that the path

selection criteria be defined by the ATTEST user by

specifying, among other things, a relative weight to be

given for branch coverage, for statement coverage, and for

exercising loop boundary conditions.

In an experiment using the program coverage method

(W0080], the ATTEST system performed efficiently and

achieved or approached the specified testing criteria for

all programs that were attempted. For example, when a high

relative weight was selected for the all branches testing

criterion, at least ninety percent of the branches were

exercised in all the programs that were analyzed. In

addition, only the minimum number of paths was usually

required to satisfy the selected testing criterion.

Although the above method has had promising results

when testing programs, more comprehensive testing may

sometimes be desired. Thus, we also developed and

investigated an approach that approximates testing all the

paths in a procedure 1MAR79]. The problem with an all paths

testing criterion is that loops within a procedure may

result in an infinite number of paths. Thus, we devised an

algorithm for selecting a subset of the paths through a loop

that we believe would increase the likelihood of detecting

loop boundary errors. Our observations about the best such

subset of paths to approximate all paths testing agrees

I



Page 6

closely with the subset described in [HOW79]. Except when

selecting paths in a loop, this algorithm for path selection

employs a depth first search algorithm and uses many of the

same techniques that proved successful in the coverage

method described above.

III. ArraZ Element Determination

During symbolic execution it is difficult to determine

the value of an array index that depends on input values.

Although the occurrence of such an indeterminate array index

can be represented symbolically for display to the user,

such an occurrence usually precludes any further error

detection analysis, consistency determination of the path

domain, or test data generation. In our experience, this

problem has been the major drawback to symbolic execution

and has severely limited the types of programs that can be

analyzed. Solutions to finding suitable indexes have been

proposed [RAM76], but they are not always applicable and are

extremely inefficient, often requiring the system to backup

to a previous statement on the path.

We have devised a method for handling indeterminate

array indexes [M0079] that seems superior to previously

attempted solutions to this problem. This method represents

all indeterminate array indexes symbolically, as well as

symbolically representing all information that subsequently

depends on these indexes. These representations, although

too complicated to be meaningful to the user, are internal

representations that allow analysis to continue. Using

p ----



-1P Page 7

these representations, the inequality solver in the test

data generation component determines a legal range of values

for each indeterminate index. It then determines if an

index in this range can be found so that the index and its

corresponding array element value result in an executable

path. If such an index is found, symbolic execution

continues. At some later point during symbolic execution

the selected array index may no longer be appropriate; the

path is nonexecutable unless other indexes satisfying the

current set of path constraints can be found. Our array

method employs an efficient algorithm for determining the

indexes that must be modified and for selecting alternative

values if any exist. Moreover, the system does not have to

backup; it must only modify the symbolic representations of

the effected indexes to correspond to their new values.

We are cautiously optimistic about this algorithm. It

takes into account the necessary relationships between array

indexes as well as the relationship between each selected

index and the value of its corresponding array element. In

the worst case, the algorithm degrades to enumeration over

all possible array indexes, but this appears to be a rare

occurrence. We have manually evaluated this algorithm for

several programs and in all cases the algorithm quickly

selected appropriate indexes or determined that the paths

were nonexecutable.

" " "" . . .. . .. -V . . . . . . . . . .. . .., " - - " i



Page 8

IV. Test Environment

We completed an initial design for an ATTEST Interface

Description language (AID) [WIN78J. In this design we

addressed two questions: what capabilities are needed in a

symbolic execution session; and how can these requests be

easily communicated. The first question led to a command

language that tries to capture the testing environment. The

second question led to considerable care being taken in

designing a natural, uniform, and yet concise syntax for the

language.

It is our belief that program testing should be

considered throughout software development and not just as

an afterthought to the implementation phase. Therefore, the

AID language supports a facility for describing a test

harness that is useful during the design and implementation

phases of software development [OGD78]. Usually the driver

program and program stubs in a test harness are simple,

static procedures that limit realistic program testing. AID

supports a facility for symbolic and dynamic descriptions of

these procedures. This capability should help simulate the

actual environment more closely and thus allow more

realistic testing during software development. Although

test data generation is usually not possible during the

design phase, symbolic execution resulting in a symbolic

representation of the design can be done.

L



Page 9

To provide support during the design phase, the AID

commands and the programming language statements (in our

case FORTRAN) can be intermixed. Initially a procedure can

be described predominately by AID commands. As the design

proceeds, additional AID commands may be added to refine the

design. Gradually the AID commands may be replaced by

FORTRAN code. Thus, AID facilitates program design by

stepwise refinement.

A study of the use of AID during both the design and

testing phases was done [WIN79]. This study revealed

several problems with the initial design, the most notable

being the lack of a facility to associate AID commands with

only the paths related to a particular path selection

criterion. For the most part, however, AID was easy to use

and provided the desired interface. Although only the most

rudimentary features of AID have been implemented in ATTEST,

the MUST project [TAY79] is building a symbolic execution

system that provides an interface based on AID.

In a related effort, we evaluated three techniques for

handling procedure calls in a testing environment. The

first and most straightforward technique involves

symbolically executing a path in the called procedure at the

time the procedure is invoked. This resembles normal

execution and requires that all the called procedures be

available for symbolic execution. The second technique,

called procedure substitution, saves the results from

symbolically executing a procedure so that when this

procedure is subsequently invoked by another procedure, the



Page 10

saved results can be 'substituted' for the call. This

technique is supportive of bottom-up integration and testing

methods in which low level procedures are developed and

tested before higher level procedures. An efficient

implementation of this technique poses many problems. As

our investigation showed [WOO80], it is frequently the case

that it is more efficient to symbolically execute a

procedure than to substitute the results from a previous

execution. Fortunately, an accurate prediction can usually

be made about which technique would be more efficient to use

for a particular procedure call. The third technique

requires that the user, employing AID commands, describe the

desired effect of an invoked procedure. This technique

supports top down software development where high level

procedures are implemented and tested before lower level

procedures. AID provides the user with a wide range of

capabilities for describing the effects of a procedure call.

The descriptions usually provided by a user, however, are

simpler to manage than the descriptions automatically

provided by procedure substitution, since the user only

describes the pertinent testing information. Thus, this

third technique can be efficiently implemented.

V. Format Analysis

Since automatic testing systems are concerned with

generating legal input data, it is important to examine the

corresponding format specifications that exist in languages

like FORTRAN and PL/1. Although symbolic execution systems

I -



Page 11

have been developed for these two languages, none of these

systems have taken format specifications into account.

We developed an algorithm to detect data list-format

list correspondence during compilation [ABR79]. Thi..

algorithm is efficient in that it retains much of the

original structure (e.g., iteration counts and nesting) of

the initial format specification. A study of 250 I/O

statements found that 94% of the data-list, format-list

pairs could be completely analyzed at compile time by our

algorithm.

Compiler optimization is another area where this

algorithm is being successfully applied. Knuth's early

study of FORTRAN programs [KNU71] found that twenty-five

percent of the execution time was spent in I/O editing, so

it is not suprising that this algorithm has been implemented

and is now being commercially employed [MCA8O] as an

optimization technique.

VI. Employing Specifications in the Testing Process

A major drawback of most program testing methods is

that program specifications are ignored; test data

selection is based solely on the information derived from

the implementation. Such methods are unlikely to detect

errors that arise when an implementation neglects aspects of

the problem, whereas utilizing an understanding of the

specification may direct attention to such errors.

Recently, several attempts have been made to employ sources

of information over and above the implementation in



Page 12

selecting test data. Goodenough and Gerhart [GO076] have

argued that the specification and the implementation are

both valuable sources of information that must be used by

testing methods. Thus far, only a few methods [GEL78,

WEY80] have been developed to exploit formal specifications,

even though such specifications are becoming more readily

available as their value in the development of reliable

software is recognized.

We have developed a method [RIC78b, 79, 81], called

partition analysis, that assists in program testing and

program verification by incorporating information from both

a formal specification and an implementation for a

procedure. The partition analysis method employs symbolic

execution techniques to partition the set of input data into

procedure subdomains, so that the elements of each subdomain

are treated uniformly by the specification and processed

uniformly by the implementation. By forming these

subdomains, the procedure domain is divided into more

manageable units, as is the task of demonstrating program

reliability. Information related to each procedure

subdomain is used to guide in the selection of test data

that reveals errors in the implementation or provides

confidence in its correctness. This information is also

used to verify consistency between the specification and the

implementation. Moreover, the test data selection process,

called partition analysis testing, and the verification

process, called partition analysis verification, are used to

enhance each other; the execution of some elements in the

-I



Page 13

subdcrmin may assist in verification, while the verification

process may direct the selection of test data.

Our investigation of partition analysis led to some

related research endeavors. To create a finite number of

subdomains, loop analysis techniques [CHE79] were evaluated

and expanded [CLA81b, 81c, 81d]. Work on determining test

data for subdomains led to substantial improvements in the

Domain Testing Strategy [HAS80] originally proposed by White

and Cohen [WHI80. Finally, in evaluating appropriate

specification and design languages for use with partition

analysis, recommendations for representing data abstraction

and modularity [CLA80] have been proposed as well as more

general recommendations for environments supporting software

development activities [CLA81a].

VII. Implementation Status

A portion of our time was spent in implementing and

evaluating many of the test data generation and symbolic

execution features we were investigating. During the grant

period our major implementation efforts included the

following:

- Three methods of path selection [MAR78, WOO80].

- An efficient system for simplifying constraints
[RIC78a].

- An improved interface to the inequality solver that
recognizes redundancies and dominance relationships
[DIL81].

- Some of the features in the AID language [WIN78].



Page 14

ATTEST is predominately written in FORTRAN 4 and 5. It

is designed to be an experimental system. Storage and

execution time considerations have always been given a lower

priority than flexibility and adaptability considerations.

Originally ATTEST was implemented on the CDC Cyber but was
e

successfully moved to our recently acquired department

research facility. ATTEST now runs on the VAX under VMS.

VIII. References

[ABR79] P. Abrahams and L.A. Clarke, "Compile-Time Analysis
of Data List-Format List Correspondences," IEEE
Transactions on Software Engineering, S,
(November 1979), pp.612-617.

[BIC79J J. Bicevskis, J. Borzovs, U. Straujums, A. Zarins,
and E. Miller, Jr., "SMOTL - A System to Construct
Samples for Data Processing Program Debugging,"
IEEE Transactions on Software Engineering, SE-5, 1,
TJ-anuary 1979), pp.6 0 -6 6 .

[CHE79] T.E. Cheatham, G.H. Holloway, and J.A. Townley,
"Symbolic Evaluation and the Analysis of Programs,"
IEEE Transactions on Software Engineering, SE-5, 4,
July 1979, 402-...L4177

[CLA78a] L.A. Clarke, "Automatic Test Data Selection
Techniques," Infotech State of the Art Report on
Software Testing, 2, (September 197,-. 3-64.

[CLA78b] L.A. Clarke, "Testing: Achievements and
Frustrations," IEEE Second International Computer
Software and Applications Conference, (NovemberT978, pp. TM-31V.

[CLA80] L.A. Clarke, J.C. Wileden, and A.L. Wolf, "Nesting
in Ada Programs is for the Birds," Proceedings of
the Ada Programming Language Symposium, Boston,
Massachusetts, (December 198), (SIGPLAN Notices,
15,11, (November 1980)), pp.139-145.

[CLA81a] L.A. Clarke, R.M. Graham, and J.C. Wileden,
"Thoughts on the Design Phase of an Integrated
Software Development Environment," Fourteenth
Hawaii International Conference on System Science,
(January 1981)'; pp.-TT7.

L1



Page 15

(CLA81b] L.A. Clarke and D.J. Richardson, "Symbolic
Evaluation Methods for Program Analysis," Program
Flow Analysis: Theory and Application, editors
S-Muchnick and N. Jones, publisher Prentice Hall,
(1981).

[CLA81c] L.A. Clarke and D.J. Richardson, "Symbolic
Evaluation Methods -- Implementations and
Applications," to appear in a North-Holland
Publication.

[CLA81d] L.A. Clarke and D.J. Richardson, "Symbolic
Evaluation Methods," University of Massachusetts
COINS Technical Report, TR81-8, (June 1981),
(submitted for publication).

[DIL81] L.K. Dillon, "Constraint Management in the ATTEST
System," University of Massachusetts COINS
Technical Report, TR81-9, (May 1981).

[GAB76] H.R. Gabow, S.N. Maheshwari, and L.J. Osterweil,
"On Two Problems in the Generation of Program Test
Paths," IEEE Transactions on Software Engineering,
(September1976).

[GEL78] A. Geller, "Test Data as an Aid to Proving Program
Correctness," CACM, 21,5, (May 1978), pp.368-375.

[G00763 J.B. Goodenough and S.L. Gerhart, "Toward a Theory
of Test Data Selection," IEEE Transactions on
Software Engineering, SE-1,2, (September 1976Y7
pp.156-173.

[HAS801 J. Hassell, L.A. Clarke, and D.J. Richardson, "A
Close Look at Domain Testing," University of
Massachusetts COINS Technical Report, TR80-16,
(December 1980).

IHOW79] W.E. Howden, "Functional Testing and Design
Abstraction," University of Victoria Technical
Report, DM-180, IR, (May 1979).

[KNU71] D.C. Knuth, "An Empirical Study of FORTRAN
Programs," Software -- Practice and Experience, 1,
(1971), pp.11

[KRA73] K.W. Krause, R.W. Smith, and M.A. Goodwin, "Optimal
Software Testing Through Automated Network
Analysis," Rec. 1973, IEEE Symposium of Software
Reliability-T975T7 '

[MCA80] Massachusetts Computer Associates, Inc., "Proposal
for the Evaluation of the FORTRAN Output
Expediter," Wakefield, Massachusetts.



Page 16

[MAR79] L. Marshall, "ATTEST Path Selection Capabilities,"
University of Massachusetts COINS Technical Note,
TN/CS/00043, (December 1979).

[McC76] T.J. McCabe, "A Complexity Measure," IEEE
Transactions on Software Engineering, (December
1976).

[M0079] D.H. Moore, "Arrays Within the Context of Symbolic
Execution," University of Massachusetts COINS
Technical Note, TN/CS/0042, (August 1979).

[OGD78] N.R. Ogden and L.A. Clarke, "Top-Down Testing with
Symbolic Execution," Digest, Workshop on Software
Testing and Test Documentation, FE. rauderdale,
Florida, (December 1978), pp.191-196.

[OST77] L.J. Osterweil, "Data Flow Analysis in Detection of
Uninitialized Variables and Editing of Impossible
Pairs," TRW Technical Report, (January 1977).

[PAI751 M.R. Paige, "Program Graphs, An Algebra, and Their
Implication for Programming," IEEE Transactions on
Software Engineering, (September 1975).

[RAM76) C.V. Ramamoorthy, S.F. Ho, and W.T. Chen, "On the
Automated Generation of Program Test Data," IEEE
Transactions on Software Engineering, SE-2, 4,
(December 19767, pp293-300.

[RIC78a] D.J. Richardson, L.A. Clarke, and D.L. Bennett,
"SYMPLR, SYmbolic Multivariate Polynomial
Linearization and Reduction," University of
Massachusetts COINS Technical Report, TR-78-16,
(July 1978).

[RIC78b] D.J. Richardson, "Theoretical Considerations in
Testing Programs by Demonstrating Consistency with
Specification," Digest, Workshop on Software
Testing and Test Documentation (December 1978),

[RIC79] D.J. Richardson, "Program Testing by Demonstrating
Consistency with Specifications," University of
Massachusetts COINS Technical Report, TR-79-02,
(February 1979).

[RIC81] D.J. Richardson and L.A. Clarke, "A Partition
Analysis Method to Increase Program Reliability,"
Fifth International Conference on Software
Engineering, (March 1981), pp.244-253-



Page 17

[STU731 L.G. Stucki, "Automatic Generation of Self-Metric
Software," Rec. 1973, IEEE Symposium Comuter
Software Reliailit7y,TApr-r-973), pp.94-1UOO.

[TAY79] R.N. Taylor, R.L. Merilatt, and L.J. Osterweil,
"Integrated Testing and Verification System for
Research Flight Sotware," Boeing Computer Services
Company, (July 31, 1979).

[WEY80] E.J. Weyuker and T.J. Ostrand, "Theories of Program
Testing and the Application of Revealing
Subdomains," IEEE Transactions on Software
Engineering, 6,3,-TMay 1980), pp.236-_2-6.

[WH180] L.J. White and E.I. Cohen, "A Domain Strategy for
Computer Program Testing," IEEE Transactions on
Software Engineering, 6,3, (May---80), pp.7J-2577.

[WIN78] D. Winters, N.R. Ogden, and L.A. Clarke, "A
Definition of AID -- The ATTEST Interface
Description Language," University of Massachusetts
COINS Technical Report, TR78-15, (December 1978).

[WIN79] D. Winters and L.A. Clarke, "A Testing Experiment
Using AID," University of Massachusetts COINS
Technical Note, TN/CS/OOO4, (August 1979).

[WOO80] J.L. Woods, "Path Selection for Symbolic Execution

Systems," Ph. D. Dissertation, Computer and
Information Science, University of Massachusetts,
September 1980.

AN:



Page 18

IX. Papers and Reports During the Grant Period

L.A. Clarke and J. Woods, "Program Testing Using Symbolic
Execution," Proceedings of the Software Specification
and Testing Technology Conference, Washington, D.C.,T-pr-i17 ) , pp. 124-144.

D.J. Richardson, L.A. Clarke, and D.L. Bennet, "SYMPLR --
tvmbolic Multivariate Polynomial Linearization and
Reduction," University of Massachusetts COINS Technical
Report, TR78-16, (July 1978).

L.A. Clarke, "Automatic Test Data Selection Techniques,"
Infotech State of the Art Report, Software Testing, 2,
Publisher nf-otec-h -Tit-rnational Limited, TSeptember
1978), pp.43-65.

L.A. Clarke, "Testing: Achievements and Frustrations," IEEE
Second Internatinal Computer Software and Ap licatons
Conference, Chicago, (November T77Tp-.'jTO-31M.

N.R. Ogden and L.A. Clarke, "Top-Down Testing with Symbolic
Execution," Digest, Workshop on Software Testin and
Test Documentaon, Ft.Ladaerda-e, Florida, (DecemV-F
1978), pp.191-196.

D.J. Richardson, "Theoretical Considerations in Testing

Programs by Demonstrating Consistency with
Specifications," Digest, Workshop on Software Testing
and Test Documentation, Ft. Lauderdale, Florida,
ffecember 1978), pp.19-56.

D. Winters, N.R. Ogden, and L.A. Clarke, "A Definition of
AID -- the ATTEST Interface Description Language,"
University of Massachusetts COINS Technical Report,
TR78-15, (December 1978).

D.H. Moore, "Arrays Within the Context of Symbolic
Execution," University of Massachusetts COINS Technical
Note, TN/CS/00042, (August 1979).

L. Marshall, "ATTEST Path Selection Capabilities,"
University of Massachusetts COINS Technical Note,
TN/CS/00043, (September 1979).

P. Abrahams and L.A. Clarke, "Compile-Time Analysis of Data
List-Format List Correspondences," IEEE Transactions on
Software Engineering, 5,6, (November-T-79), pp.612-61Tr

L.A. Clarke, J.C. Wileden, and A.L. Wolf, "Nesting in Ada
Programs is for the Birds," Proceedings of the Ada
Programming Language S, Boston, Massachusetts,
(December 1980), (SIGPLAN Notices, 15,11, (November
1980), pp.139-145).



Page 19

J. Hassell, L.A. Clarke, and D.J. Richardson, "A Close Look
at Domain Testing," University of Massachusetts COINS
Technical Report, TR80-16, (December 1980).

L.A. Clarke, R.M. Graham, and J.C. Wileden, "Thoughts on the
Design Phase of an Integrated Software Development
Environment," Fourteenth Hawaii International
Conference on System Science, (January 1981), pp.11-17.

D.J. Richardson and L.A. Clarke, "A Partition Analysis
Method to Increase Program Reliability," Fifth
International Conference on Software Engineering,
(March 1981), pp.244-253.

L.A. Clarke and D.J. Richardson, "Symbolic Evaluation
Methods for Program Analysis," Program Flow Analysis:
Theory and A licationl, editors S uhnick and
N. ones-ub Prentice Hall, (1981).

L.A. Clarke and D.J. Richardson, "Symbolic Evaluation
Methods -- Implementations and Applications," to appear
in a North-Holland Publication.

L.K. Dillon, "Constraint Management in the ATTEST System,"
University of Massachusetts COINS Technical Report,
TR81-9, (May 1981).

L.A. Clarke and D.J. Richardson, "Symbolic Evaluation
Methods," University of Massachusetts COINS Technical
Report, TR81-8, (June 1981), (submitted for
publication).

0* - 3. -


